Skip to content

Benchmarks

Below are AI inferencing benchmarks for Jetson Orin Nano Super and Jetson AGX Orin .

Jetson Orin Nano Super

Model Jetson Orin Nano (original) Jetson Orin Nano Super Perf Gain (X)
Llama 3.1 8B 14 19.14 1.37
Llama 3.2 3B 27.7 43.07 1.55
Qwen2.5 7B 14.2 21.75 1.53
Gemma 2 2B 21.5 34.97 1.63
Gemma 2 9B 7.2 9.21 1.28
Phi 3.5 3B 24.7 38.1 1.54
SmolLM2 41 64.5 1.57

For running these benchmarks, this script will launch a series of containers that download/build/run the models with MLC and INT4 quantization.

git clone https://github.com/dusty-nv/jetson-containers
bash jetson-containers/install.sh
bash jetson-containers/packages/llm/mlc/benchmarks.sh

Model Jetson Orin Nano (original) Jetson Orin Nano Super Perf Gain (X)
VILA 1.5 3B 0.7 1.06 1.51
VILA 1.5 8B 0.574 0.83 1.45
LLAVA 1.6 7B 0.412 0.57 1.38
Qwen2 VL 2B 2.8 4.4 1.57
InternVL2.5 4B 2.5 5.1 2.04
PaliGemma2 3B 13.7 21.6 1.58
SmolVLM 2B 8.1 12.9 1.59

Model Jetson Orin Nano (original) Jetson Orin Nano Super Perf Gain (X)
clip-vit-base-patch32 196 314 1.60
clip-vit-base-patch16 95 161 1.69
DINOv2-base-patch14 75 126 1.68
SAM2 base 4.42 6.34 1.43
Grounding DINO 4.11 6.23 1.52
vit-base-patch16-224 98 158 1.61
vit-base-patch32-224 171 273 1.60

Jetson AGX Orin

For running LLM benchmarks, see the MLC container documentation.

Small language models are generally defined as having fewer than 7B parameters (Llama-7B shown for reference)
For more data and info about running these models, see the SLM tutorial and MLC container documentation.

This measures the end-to-end pipeline performance for continuous streaming like with Live Llava .
For more data and info about running these models, see the NanoVLM tutorial.

VIT performance data from [1] [2] [3]

For running Riva benchmarks, see ASR Performance and TTS Performance .

For running vector database benchmarks, see the NanoDB container documentation.